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Expressions for the velocities of propagation of the discontinuity surfaces in a homogeneous anisotropic me-
dium have been obtained and equations of bicharacteristics have been derived. Using them, the surfaces of in-
verse velocities and three-dimensional wave fronts of electromagnetic waves have been constructed for
different values of the permittivities and their features have been investigated.

Introduction. The first application of the classical method of characteristics to the Maxwell electrodynamics
equations in the case of the isotropy and anisotropy of electrical properties was put forth by Levi-Civita in [1]. In this
work, certain regularities of the propagation of electromagnetic waves were investigated using the equation of charac-
teristics, and the equation of the wave surface was derived. In the works of Parton et al. [2–4], the method of char-
acteristics was not developed for this direction in investigations, which is attributable to the cumbersomeness of the
corresponding computations. However the capabilities and means of modern computer engineering make it possible to
bypass these difficulties and to make a more comprehensive analysis of the characteristic equation for a system of
electrodynamic equations.

Equation of Characteristics and the Surfaces of Inverse Velocities. Let us consider the following system of
Maxwell equations for an anisotropic medium [1, 5]:

ε1E
.

1 + ∂3H2 − ∂2H3 + ... = 0 ,   µH
.

1 + ∂2E3 − ∂3E2 + ... = 0 ;

ε2E
.

2 + ∂1H3 − ∂3H1 + ... = 0 ,   µH
.

2 + ∂3E1 − ∂1E3 + ... = 0 ;

ε3E
.

3 + ∂2H1 − ∂1H2 + ... = 0 ,   µH
.

3 + ∂1E2 − ∂2E1 + ... = 0 ,

(1)

where ∂i = 
∂

∂xi
, i = 1, 3

___
; the dot denotes differentiation with respect to time.

Following [1, 5], we write the equation of the characteristic surface Z(t, x1, x2, x3) = 0 for system (1) in the
form

p0
2
 (p0

4
 µ2ε1ε2ε3 + p0

2
 µ (p1

2ε2ε3 + p2
2ε1ε3 + p3

2ε1ε2 −

− g
2
 (ε1ε2 + ε2ε3 + ε1ε3)) + g

4
 (ε1 + ε2 + ε3) −

− g
2
 (p3

2
 (ε1 + ε2) + p1

2
 (ε2 + ε3) + p2

2
 (ε1 + ε3))) = 0 . (2)

Here

p0 = 
∂Z

∂t
 ,   pi = 

∂Z

∂xi
 ,   i = 1, 3

___
 ,   g

2
 = p1

2
 + p2

2
 + p3

2
 .
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Equation (2) yields the existence of the stationary discontinuity surface V = p0
 ⁄ g = 0 and of two electromag-

netic waves whose velocities of propagation satisfy the following equation (velocity V is normal to the wave surface):

V
4µ2ε1ε2ε3 + V

2µ (ε2ε3 cos
2
 α1 + ε1ε3 cos

2
 α2 + ε1ε2 cos

2
 α3 −

− (ε1ε2 − ε2ε3 − ε1ε3) + ε1 + ε2 + ε3 −

− (cos
2
 α3 (ε1 + ε2) − cos

2
 α1 (ε2 + ε3) − cos

2
 α2 (ε1 + ε3)) = 0 , (3)

where cos αi = pi
 ⁄ g are the direction cosines of the normal to the characteristic surface, i = 1, 3

___
. From (3) we obtain

V1,2 = 
√A % √A2 − 4ε1ε2ε3 (ε1 cos2 α1 + ε2 cos2 α2 + ε3 cos2 α3)

√ 2µε1ε2ε3

 ,

A = ε1ε2 (1 − cos
2
 α3) + ε2ε3 (1 − cos

2
 α1) + ε1ε3 (1 − cos

2
 α2) .

(4)

Figure 1 shows the surfaces of inverse velocities R1,2 = 1/V1,2 constructed using formulas (4) for biaxial bar-
ium-niobate crystals of rhombic system (ε1 = 196⋅10−11 F/m, ε2 = 201⋅10−11 F/m, and ε3 = 28⋅10−11 F/m [6]). We
note that the inverse-velocity surfaces make it possible not only to find the velocity of propagation of the discontinuity
surface but also to determine the direction of the transfer of electromagnetic energy.

Figure 1 yields that the inverse-velocity surfaces R1 and R2 are an ellipsoid and a sphere respectively. This is
attributable to the fact that ε2

 ⁄ ε1 C 1.026 C 1, i.e., barium niobate is similar in electrical properties to semiconductor
crystals of higher systems of symmetry (uniaxial crystals). If the values of the constants ε1, ε2, and ε3 markedly differ,

Fig. 1. Inverse-velocity surfaces R1 and R2, × 10−5 √µ , sec/m.

Fig. 2. Inverse-velocity surfaces R1 and R2 for the material whose permittivi-
ties satisfy the relations ε1

 ⁄ ε3 = 2 and ε3
 ⁄ ε2 = 1/4.

398



these surfaces of inverse velocities have quite a complex form for electromagnetic waves. Figure 2 shows the inverse-
velocity surfaces R2 for materials whose permittivities satisfy certain relations which are selected so as to show possi-
ble physical effects (the value of µ is shown arbitrarily).

The inverse-velocity surface R2 is predominantly convex but there are four portions where the surfaces change
their curvature and the convexity becomes concavity (Fig. 2). The appearance of such portions on the inverse-velocity
surface points to the occurrence of four lacunas on the wave surface of an electromagnetic wave which propagates
with a velocity V2. The inverse-velocity surfaces R1 do not possess the above characteristic properties, i.e., the propa-
gation of electromagnetic waves with a velocity V1 is not accompanied by the formation of lacunas. For materials
characterized by other analogous permittivity ratios, the surfaces of inverse velocities have the same form. Thus, to ob-
tain the inverse-velocity surfaces for the material with ε1

 ⁄ ε3 = 1/2 and ε3
 ⁄ ε2 = 4 one should rotate the surfaces R1

and R2 (presented in Fig. 2) by 90o about the x1 axis; if ε1
 ⁄ ε3 = ε3

 ⁄ ε2 = 2, one should successively rotate R1 and
R2 by 90o about the x1 and x3 axes, and so on. We note that the inverse-velocity surfaces have been constructed in
the spherical coordinate system (r, ϕ, θ), where it was taken that r = 1, cos α1 = sin θ cos ϕ, cos α2 = sin θ sin
ϕ, and cos α3 = cos θ.

Bicharacteristics and Wave Surfaces. Let us express p0 from Eq. (2):

p0
(1,2)

 = 
√ B % √B2 − 4ε1ε2ε3g2 (ε1p1

2 + ε2p2
2 + ε3p3

2)

√ 2µε1ε2ε3

 ,

B = ε1ε2 (p1
2
 + p2

3) + ε2ε3 (p2
2
 + p3

2) + ε1ε3 (p1
2
 + p3

2) .

(5)

From (5), by differentiating p0
(1,2) with respect to the parameters pi, i = 1, 3

___
, we find the equations of bicharacteristics

∂p0
(1,2)

∂p1
 = 

dx1
(1,2)

dt
 = p1ε1  

ε2 + ε3 % 
(ε2 − ε3) (p1

2ε1 (ε2 − ε3) + p2
2ε2 (ε1 − ε3) + p3

2ε3 (ε2 − ε1))

√B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

√ 2µε1ε2ε3  √ B % √B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

 ,

∂p0
(1,2)

∂p2
 = 

dx2
(1,2)

dt
 = p2ε2  

ε1 + ε3 % 
(ε1 − ε3) (p1

2ε1 (ε2 − ε3) + p2
2ε2 (ε1 − ε3) + p3

2ε3 (ε2 − ε1))

√B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

√ 2µε1ε2ε3  √ B % √B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

 ,

∂p0
(1,2)

∂p3
 = 

dx3
(1,2)

dt
 = p3ε3  

ε1 + ε2 % 
(ε1 − ε2) (p1

2ε1 (ε3 − ε2) + p2
2ε2 (ε1 − ε3) + p3

2ε3 (ε1 − ε2))

√B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

√ 2µε1ε2ε3  √ B % √B2 − 4ε1ε2ε3g2 (ε1p1
2 + ε2p2

2 + ε3p3
2)

 .

(6)

Equation (6) yields that the bicharacteristics are functions of zero order and do not depend on the time t. Taking into
account that pi = g cos αi, i = 1, 3

___
, we obtain

x1
(1,2)

 = 
cos α1ε1

2µε1ε2ε3V1,2
 (ε2 + ε3 % (ε2 − ε3)  

ε1 (ε2 − ε3) cos
2
 α1 + ε2 (ε1 − ε3) cos

2
 α2 + ε3 (ε2 − ε1) cos

2
 α3

√A2 − 4ε1ε2ε3 (ε1 cos2 α1 + ε2 cos2 α2 + ε3 cos2 α3)
 t ,

x2
(1,2)

 = 
cos α2ε2

2µε1ε2ε3V1,2
 (ε1 + ε3 % (ε1 − ε3) ×
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× 
ε1 (ε2 − ε3) cos

2
 α1 + ε2 (ε1 − ε3) cos

2
 α2 + ε3 (ε2 − ε1) cos

2
 α3

√A2 − 4ε1ε2ε3 (ε1 cos2 α1 + ε2 cos2 α2 + ε3 cos2 α3)
 t , (7)

x3
(1,2)

 = 
cos α3ε3

2µε1ε2ε3V1,2
 (ε1 + ε2 % (ε1 − ε2) ×

× 
ε1 (ε3 − ε2) cos

2
 α1 + ε2 (ε1 − ε3) cos

2
 α2 + ε3 (ε2 − ε1) cos

2
 α3

√A2 − 4ε1ε2ε3 (ε1 cos2 α1 + ε2 cos2 α2 + ε3 cos2 α3)
 t .

Formulas (7) make it possible to determine the coordinates (x1
(1), x2

(1), x3
(1)) and (x1

(2), x2
(2), x3

(2)) of the points of the me-
dium reached by the wave surfaces L1 and L2 of the electromagnetic waves (propagating with velocities V1 and V2 re-
spectively) at the instant of time t. Figure 3 gives the wave surfaces L1,2 in barium niobate at the instant of time t =
1; these surfaces have been constructed using formulas (7) in the parametric coordinate system where cos α1 = cos u
cos v, cos α2 = sin u cos v, and cos α3 = sin v. Both surfaces are lacuna-free and represent an ellipsoid (L1) and a
sphere (L2), which is also attributable to the small difference between the permittivities ε1 and ε2.

Another form is assumed by the wave surfaces L1 and L2 of electromagnetic waves propagating in materials
whose permittivities satisfy the relations ε1

 ⁄ ε3 = 2 and ε3
 ⁄ ε2 = 1/4 (Fig. 4).

As follows from Fig. 4, the surface L2 contains four lacunas which have the form of cosines (the base of a
lacuna is not a circle) and are located symmetrically relative to the coordinate planes (for the case of Fig. 4 the plane
x1 = 0 goes through the lacunas relative to the planes x2 = 0 and x3 = 0). The wave surface L1 has no lacunas and
represents an ellipsoid oblate in the direction of the bisectors of coordinate quarters of the plane x1 = 0. The wave

Fig. 3. Wave surfaces L1 and L2 of electromagnetic waves, × 10−5 √µ−1 , m.

Fig. 4. Wave surfaces L1 and L2 of electromagnetic waves propagating in the
material with permittivities of ε1

 ⁄ ε3 = 2 and ε3
 ⁄ ε2 = 1/4.
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surfaces for materials whose permittivities satisfy the relations ε1
 ⁄ ε3 = 1/2, ε3

 ⁄ ε2 = 4, ε1
 ⁄ ε3 = ε3

 ⁄ ε2 = 2, ε1
 ⁄ ε3 = 4,

ε3
 ⁄ ε2 = 1/2, ε1

 ⁄ ε3 = 1/4, ε3
 ⁄ ε2 = 2, and ε1

 ⁄ ε3 = ε3
 ⁄ ε2 = 1/2 have an analogous form.

We note that the wave surfaces L1,2 coincide in form with the surfaces of ray velocities (or the ray surfaces);
the values of the ray velocities can be calculated using (6) from the formula

P1,2 =  ∑ 

k=1

3

 







∂p0
(1,2)

∂pk







 .

Sections of the Inverse-Velocity Surfaces by Coordinate Planes. Let us consider the sections of the inverse-
velocity surfaces R1,2 and the wave surfaces L1,2 by the coordinate planes xi = 0, i = 1, 3

___
. Expressions (3) for the ve-

locities of electromagnetic waves in the planes x1 = 0 (cos α1 = 0, cos α2 = sin α, and cos α3 = cos α), x2 = 0 (cos
α1 = sin α, cos α2 = 0, and cos α3 = cos α), and x3 = 0 (cos α1 = sin α, cos α2 = cos α, and cos α3 = 0) assume
the following form:

V1,2
(1)

 = 
√ε2ε3 + ε1a % ε 2ε3 − ε1a

√ 2µε1ε2ε3

 ,   a = ε3 cos
2
 α + ε2 sin

2
 α ;

V1,2
(2)

 = 
√ε1ε3 + ε2b % ε 1ε3 − ε2b

√ 2µε1ε2ε3

 ,   b = ε3 cos
2
 α + ε1 sin

2
 α ;

V1,2
(3)

 = 
√ε1ε2 + ε3c % ε 1ε2 − ε3c

√ 2µε1ε2ε3

 ,   c = ε1 cos
2
 α + ε2 sin

2
 α .

(8)

Here the subscript corresponds to the number of the coordinate plane. We apply (8) to construction of the curves of
inverse velocities in the coordinate planes xi = 0, i = 1, 3

___
, in the case where the permittivities of the material satisfy

the relations ε1
 ⁄ ε3 = 2 and ε3

 ⁄ ε2 = 1/4 (Fig. 5).
In constructing the inverse-velocity curves, the value of the permeability µ is taken arbitrarily and the time t

is selected so that the value of V1 is 1 m/sec on the x3 axis. The inverse-velocity curve R1 = 1/V1 represents an el-
lipsoid with semiaxes of 0.65 and 1 m/sec in the coordinate plane x2 = 0 and a circle with a radius of 0.65 m/sec in
the x3 = 0 plane; the curve R2 = 1/V2 is a circle with a radius of 1.4 sec/m in the plane x2 = 0 and an ellipse with
semiaxes of 1 and 1.4 sec/m in the plane x2 = 0.

The curve of R2 has its characteristic properties which point to the formation of a lacuna (loop) on the curve
of the wave front in the plane x1 = 0 and lie in the existence of four portions of the curve with two inflection points
on each. Another approach to the detection of such characteristic properties lies in finding two points of tangency of
one tangent to the inverse-velocity curves. Both approaches have received wide acceptance in investigating the condi-

Fig. 5. Curves of the inverse velocities R1 and R2 in the coordinate plane x1 =
0, sec/m.

401



tions of appearance of lacunas occurring in propagation of elastic waves in anisotropic media [7–9]. The analogous
analysis of the curves of the inverse velocities of electromagnetic waves R2 in three coordinate planes makes it possi-
ble to formulate two groups of occurrence conditions for lacunas in the form of pairs of inequalities which must be
satisfied by the permittivities of the medium (see Table 1).

The conditions formulated in Table 1 are approximate in character, and the error of a numerical value on the
right-hand side of the inequalities can attain %0.05. When at least one inequality of conditions 1 or 2 is violated, no
lacunas occur on the wave front of the electromagnetic wave propagating with a velocity V2. Thus, for barium niobate
we have ε1

 ⁄ ε3 = 7, ε3
 ⁄ ε2 = 0.14, and ε2

 ⁄ ε1 = 1.03, i.e., the first condition of occurrence of lacunas in the plane x2
= 0 is not fulfilled (or the second condition for the plane x1 = 0).

Wave Fronts in Coordinate Planes. To construct the curves of the wave front L1,2 of electromagnetic waves
in coordinate planes we write, using (7), the expressions for the bicharacteristics in these planes (the subscript denotes
the number of the coordinate axis, the superscript denotes the coordinate plane, the "+" sign relates to L1, and the "–"
sign relates to L2):

x2
(1)

 = 
√ε2  sin α ((ε1 + ε3)  ε2ε3 − ε1a  % (ε1 − ε3) (ε1a − ε2ε3))

√2µε1ε3  ε 2ε3 − ε1a  √ε2ε3 + ε3a − ε 2ε3 − ε1a
 t ,

x3
(1)

 = 
√ε3  sin α ((ε1 + ε2)  ε2ε3 − ε1a  % (ε1 − ε2) (ε1a − ε2ε3))

√2µε1ε2  ε 2ε3 − ε1a  √ε2ε3 + ε3a − ε 2ε3 − ε1a
 t ;

(9)

x1
(2)

 = 
√ε1  sin α ((ε2 + ε3)  ε1ε3 − ε2b  % (ε2 − ε3) (ε2b − ε1ε3))

√2µε2ε3  ε 1ε3 − ε2b  √ε1ε3 + ε2b − ε 1ε3 − ε2b
 t ,

x3
(2)

 = 
√ε3  sin α ((ε1 + ε2)  ε1ε3 − ε2b  % (ε2 − ε1) (ε2b − ε1ε3))

√2µε1ε2  ε 1ε3 − ε2b  √ε1ε3 + ε2b − ε 1ε3 − ε2b
 t ;

(10)

x1
(3)

 = 
√ε1  sin α ((ε2 + ε3)  ε1ε2 − ε3c  % (ε3 − ε2) (ε3c − ε1ε2))

√2µε2ε3  ε 1ε2 − ε3c  √ ε1ε2 + ε3c − ε 1ε2 − ε3c
 t ,

x2
(3)

 = 
√ε2  cos α ((ε1 + ε3)  ε1ε2 − ε3c  % (ε3 − ε1) (ε3c − ε1ε2))

√2µε1ε3  ε 1ε2 − ε3c  √ ε1ε2 + ε3c − ε 1ε2 − ε3c
 t .

(11)

The constructions of the wave fronts in the coordinate planes x2 = 0 and x3 = 0 carried out using (10) and
(11) show that for materials with permittivities satisfying the second condition in the plane x1 = 0 (see Table 1) the

TABLE 1. Conditions of Occurrence of Lacunas on the Wave Surface L2

Conditions
Plane

x1 = 0 x2 = 0 x3 = 0

1

ε1
 ⁄ ε3 ≤ 0.85 ε1

 ⁄ ε3 ≥ 1.15 ε1
 ⁄ ε3 ≥ 1.15

ε3
 ⁄ ε2 ≥ 1.15 ε3

 ⁄ ε2 ≤ 0.85 ε3
 ⁄ ε2 ≥ 1.15

ε2
 ⁄ ε1 ≤ 0.85 ε2

 ⁄ ε1 ≤ 0.85 ε2
 ⁄ ε1 ≤ 0.85

2

ε1
 ⁄ ε3 ≥ 1.15 ε1

 ⁄ ε3 ≤ 0.85 ε1
 ⁄ ε3 ≤ 0.85

ε3
 ⁄ ε2 ≤ 0.85 ε3

 ⁄ ε2 ≥ 1.15 ε3
 ⁄ ε2 ≤ 0.85

ε2
 ⁄ ε1 ≥ 1.15 ε2

 ⁄ ε1 ≥ 1.15 ε2
 ⁄ ε1 ≥ 1.15
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wave front is a circle in the plane x2 = 0 and an ellipse in the plane x3 = 0. Figure 6 shows the sections of the wave
surfaces L1 and L2 of electromagnetic waves by the plane x1 = 0 for anisotropic media with different permittivity ratios.

In constructing the wave fronts L2, the value of the permeability and the time t are selected so that the point
of intersection of the wave front and the axis x2 is at a distance of 1 m from the disturbance source.

From Fig. 6 it follows that the wave fronts L1 and L2 superimpose on one another at the sites of location of
the lacunas; the front L2 does not go beyond the scope of the front L1. We note that the form of the lacunas markedly
changes when the ratios ε1

 ⁄ ε2 and ε3
 ⁄ ε2 deviate from the numerical values on the right-hand side of the inequalities

(see Table 1). Thus, on the L2
′  curve the edges of the lacunas are nonsymmetric relative to the axis going through the

origin of coordinates and the point at which the branches of the wave front intersect (see Fig. 6).
Thus, the wave surfaces of the electromagnetic waves in biaxial crystals (ε1 ≠ ε2 ≠ ε3) are either ellipsoids or

represent surfaces similar to those shown in Fig. 4 in the case of fulfillment of the conditions (see Table 1). In
uniaxial crystals, the surfaces L1,2 are an ellipsoid and a sphere respectively, while in cubic crystals they are two
spheres.

The most widespread approach to investigation of the equation of characteristics in the theory of discontinuous
solutions and the dispersion equations in the theory of plane waves is the solution of them in the coordinate planes
xi = 0, i = 1, 3

___
. Thus, for example, in our case in the plane x1 = 0 (cos α1 = 0) we obtain, from (3), the following

equation:

V
2
 (µε1V

2
 − 1) (ε2 cos

2
 α2 + ε3 cos

2
 α3 − µε2ε3V

2) = 0 .

This yields the existence of the stationary discontinuity surface V = 0 and of two electromagnetic waves propagating
with velocities

V1 = 1 ⁄ √µε1  ,   V2 = √(ε2 cos2 α2 + ε3 cos2 α3) ⁄ µε2ε3  . (12)

The inverse-velocity curves constructed using (12) represent a circle and an ellipse for any relation between
the permittivities and they do not point to the appearance of any features in propagation of electromagnetic waves.

Let us multiply the left- and right-hand sides of (12) by g and take into account that p0 = Vg and pi = g cos
αi, i = 1, 3

___
. We obtain

p0
(1)

 = g ⁄ √µε1  ,   p0
(2)

 = √(ε2p2
2 + ε3p3

2) ⁄ µε2ε3  . (13)

We find the bicharacteristics forming the wave fronts of the electromagnetic waves in the plane x1 = 0:

∂p0
(1)

∂pk

 = 
dxk

(1)

dt
 = 

pk

g √µε1

 ,   
∂p0

(2)

∂pk

 = 
dxk

(2)

dt
 = 

εkpk

√ µε2ε3 (ε2p2
2 + ε3p3

2)
(14)

or

Fig. 6. Sections of the wave fronts of electromagnetic waves by the plane x1
= 0 in materials with different permittivity ratios: L1,2, ε1

 ⁄ ε3 = 2 and ε3
 ⁄ ε2 =

1/4 m; L2
′ , ε1

 ⁄ ε3 = 5 and ε3
 ⁄ ε2 = 1/10 m.
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xk
(1)

 = t cos αk
 ⁄ √µε1  ,   xk

(2)
 = 

tεk cos αk

√ µε2ε3 (ε2 cos2 α2 + ε3 cos2 α3)
 ,   k = 2, 3 . (15)

Upon simple manipulations, from (15) we will have

x2
2
 + x3

2
 = 1 ⁄ √µε1  ,   x2

2 ⁄ ε2 + x3
2 ⁄ ε3 = 1 ⁄ √µε2ε3  ,

i.e., the wave fronts in the plane x1 = 0 represent either circles or ellipses and contain lacunas for none of the values
of ε1, ε2, and ε3.

Using (14) we find the ray velocity of propagation of the electromagnetic waves P1,2:

P1 = 1 ⁄ √µε1  ,   P2 = 
√ε2

2 cos2 α2 + ε3
2 cos2 α3)

√ µε2ε3 (ε2 cos2 α2 + ε3 cos2 α3)
 . (16)

The values of the ray and phase velocities of propagation of the electromagnetic waves determined by formu-
las (16) and (12) coincide for the corresponding values of the permittivities and the permeabilities and the angles of
incidence of the normal to the wave surface. It is easily seen that analogous results are yielded by solution of Eq. (3)
in the coordinate planes x2 = 0 and x3 = 0.

CONCLUSIONS

The results of solution of the equation of propagation of the discontinuity surface in coordinate planes par-
tially coincide with those obtained in solving the equation of characteristics in the general case; therefore, one should
carry out further investigations, relying on the physicomechanical properties of actual media and the regularities of
propagation of electromagnetic waves in anisotropic media established experimentally.

NOTATION

E = (E1, E2, E3) and H = (H1, H2, H3), electric and magnetic field strengths; µ, permeability of the medium;
ε1, ε2, and ε3, dielectric constants of the anisotropic medium.
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